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ABSTRACT

A new micromechanical theory is presented for the response of heterogeneous metal matrix

composites subjected to thermal gradients. In contrast to existing micromechanical theories that

utilize classical homogenization schemes in the course of calculating microscopic and macroscopic

field quantities, in the present approach the actual microstructural details are explicitly coupled with

the macrostructure of the composite. Examples are offered that illustrate limitations of the classical

homogenization approach in predicting the response of thin-walled metal matrix composites with

large-diameter fibers when subjected to thermal gradients. These examples include composites with
a finite number of fibers in the thickness direction that may be uniformly or nonuniformly spaced,

thus admitting so-called functionally gradient composites. The results illustrate that the classical

approach of decoupling micromechanical and macro-mechanical analyses in the presence of a finite

number of large-diameter fibers, finite dimensions of the composite, and temperature gradient may

produce excessively conservative estimates for macroscopic field quantities, while both underesti-

mating and overestimating the local fluctuations of the microscopic quantities in different regions

of the composite. Also demonstrated is the usefulness of the present approach in generating favorable

stress distributions in the presence of thermal gradients by appropriately tailoring the internal

microstructural details of the composite.

NOMENCLATURE

ui(S), Ti(S) -- displacement and traction components on the surface S of a composite

co, _o -- average values of strains and stresses in a composite subjected to
homogeneous boundary conditions

E/j, a;j -- average values of strains and stresses in a representative volume element
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-- strains and stresses at the point Xk in a composite

-- elements of the effective stiffness tensor of a composite

-- indices used to identify the cell (p,q,r)

-- indices used to identify the subcell (al3Y)

-- dimensions of the subceU (al3T) in the p-th unit cell

-- volume of the subcell (al]q)

-- local subcell coordinates

-- coefficients of heat conductivity of the material in the subcell (al3T)

-- temperature field in the subcell (a[3y)

-- temperature at the center of the subcell (a[3T)

-- coefficients in the temperature expansion within the subcell (ct[3T)

-- components of the heat flux vector in the subcell (a[_t)

-- average values of the subceU heat flux component q_at_,) when

l = m = n = O; higher-order heat fluxes for other values of l,m,n

-- surface integrals of subcell interfacial heat fluxes

-- displacement components in the subcell (a[3"/)

-- x 1 displacement component at the center of the subcell (a[3 T)

-- coefficients associated with the linear terms in the second-order expansion

of the subcell displacement ut a_'_)

-- coefficients associated with the linear terms in the first-order expansion of

the subcell displacement u__th')

-- coefficients associated with the linear terms in the first-order expansion of

the subcell displacement u_cxt3_')

-- coefficients associated with the quadratic term xt a)z in the second-order

expansion of the subceU displacement ut a_t)
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coefficients associated with the quadratic term x_ )2 in the second-order

expansion of the subcell displacement ut _')

coefficients associated with the quadratic term X_"Y)2in the second-order

expansion of the subcell displacement ut al3't)

local strain components in the subcell ((x[_T)

local stress components in the subcell (a_y)

elements of the stiffness tensor of the material in the subcell (o_[_y)

elements of the thermal tensor of the material in the subcell (otl3T)

(products of the stiffness tensor and the thermal expansion coefficients)

average values of the subcell stress components _!_13-f) when

l = m = n = 0; higher-order stress components for other values of l,m,n

_(a) = +__d_)/2surface integrals of the subcell interracial stresses _t_ I_') at xl

-(_) = +hfJ2surface integrals of the subcell interfacial stresses t_ _) at x2

surface integrals of the subcell interracial stresses _[_'t) -(_')at x3 = +I_,/2,

1.0 INTRODUCTION

The past thirty years have seen tremendous growth in the development and use of compo-

site materials. The applications range from sporting and recreational accessories to advanced

aerospace structural and engine components. Historically, composite materials have been classi-

fied into different categories based on the geometry and distribution of the reinforcement phase

and the type of the matrix phase. For example, polymeric matrix (PMC), metal matrix (MMC),

intermetallic matrix (IMC), and ceramic matrix (CMC) composites are four classes of compo-

sites based on the type of matrix used to contain the reinforcement phase. The reinforcement

phase can be finite-length or continuous, oriented or random, thereby providing further classifi-

cation into short-fiber, oriented or random composites, and unidirectional (continuous and

oriented) composites.

Typically, the reinforcement phase in the various classes of composite materials is distri-

buted in a statistically or macroscopically uniform fashion such that the resulting two-phase

material is macroscopically homogeneous with properties that do not vary spatially. Numerous

micromechanical approaches have been developed during the :past thirty year s, as discussed by
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Aboudi (1991), to calculate the average (often called effective or macroscopic) properties of

such composites given the geometry, distribution and properties of the individual phases. The

micromechanical analysis makes it possible to replace the heterogeneous microstmcture of the

composite with an equivalent homogeneous continuum characterized by a set of effective elastic

properties that subsequently can be used in more complicated structural analyses. The effective

elastic properties are defined as the constitutive parameters that relate volume averages of the

stress and strain components under so-called homogeneous boundary conditions, specified either

in terms of surface displacements or prescribed surface tractions.

The central assumption in applying the various well-established micromechanical tech-

niques is the existence of a definable representative volume element (RVE) at each point within

the heterogeneous continuum ancl the ability to apply homogeneous boundary conditions to such

an element. This amounts to decoupling the local and global analyses by evaluating the effective

material properties at a given point based only on the local states of stress and deformation at

that point which are assumed to be known a priori. Such decoupling is based on the assumption

of the applicability of a principle sometimes referred to in the literature as the principle of local

action (Malvern, 1969). The decoupling of local and global analyses clearly limits the range of

applicability of the classical homogenization approach to composites with very fine mierostmc-

tures (i.e., inclusion dimensions) with respect to the overall dimensions of the composite, and

imposes constraints on the severity of deformation gradients that can be admitted. Composites

with fine microstructures include unidirectional composites reinforced with small-diameter

fibers such as graphite and carbon, for instance. Alternatively, in composites containing rela-

tively large-diameter fibers with respect to the thickness of a single ply, such as B/A1 or SiC/Ti,

the applicability and reliability of the traditional microscopic approach based on the concept of

an RVE and the classical homogenization treatment is suspect, and remains to be established due

to potential coupling between the microstructure and the global response. This is illustrated in

Figure 1 for situations involving thermal gradients, and will be discussed in more detail in the

following section.

Recently, a new concept involving tailoring of the internal microstructure of the composite

to achieve certain required response characteristics to given input parameters has taken root.

This idea has been pursued vigorously by Japanese researchers (cf. Yamanouchi et al., 1990)

who have coined the term functionally gradient materials to describe this newly emerging

class of composites. The idea involves spatially grading the properties of the material by using

variable spacings between individual inclusions, as well as by using inclusions with different

properties, sizes and shapes. Such an approach offers a number of advantages over the more

traditional methods of changing the compliance of composite smactural elements by varying the
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lamination sequence or dropping plies to reduce the cross-sectional geometry, for instance.

Grading or tailoring the internal microstructure of a composite material or a structural com-

ponent allows the designer to truly integrate both the material and structural considerations into

the final design and final product. This brings the entire structural design process to the material

level in the purest sense, thereby increasing the number of possible material configurations for

specific design applications.

Composite materials with tailored microstructures are ideal candidates for applications

involving severe thermal gradients, ranging from thermal structures in advanced aircraft and

aerospace engines to circuit boards. For instance, a direct consequence of the temperature gra-

dient across the thickness of a structural component (such as a combustor liner or airfoil) is the

tendency to bend in the out-of-plane direction. This tendency will be present irrespective of

whether a homogeneous or heterogeneous material is Considered. However, by judiciously

tailoring the microstructure of a heterogeneous material, the thermal bending moment can be

reduced, if not eliminated, consequently decreasing the severity of warping.

The potential benefits that may be derived from composites with tailored microstructures

have lead to increased activities in the areas of processing, and materials science, of these

materials. These activities, however, are handicapped by the lack of appropriate computational

strategies for the response of functionally graded materials that explicitly couple the hetero-

geneous mierostrueture of the material with the global analysis. As implied by the foregoing

brief discussion on the limits of applicability of the classical homogenization approach, and

further elaborated upon in the following section, traditional micromechanical schemes currently

used in analyzing functionally graded materials, that is those which implicitly assume the

existence of an RVE and the validity of the principle of local state, suffer from theoretical

shortcomings and cannot be used with confidence. As a result, a new analytical approach is

presented (that explicitly couples the heterogeneous microsmacture of the material with the glo-

bal analysis) in order to respond to the current need to analyze behavior of composites with

tailored microstructures (e.g. functionally graded, large-diameter reinforcement) in the presence

of thermal gradients. In particular, the problem considered herein is a composite plate with a fin-

ite thickness H extending to infinity in the x2-x3 plane and subjected to a temperature gradient,

see Figure 2. The composite is reinforced by periodic arrays of fibers in the direction of the x2

axis or the x3 axis (Figure 2a), or both (Figure 2b). In the direction of the xl axis, hereafter

called the functionally gradient (FG) direction, the fiber spacing between adjacent arrays may

vary. The reinforcing fibers can be either continuous or finite-length. Further, each array of

fibers can admit different thermoelastic properties. Consequently, the model admits a variety of

tailored microstructural configurations whose response to the applied thermal gradient can be



investigated(including unidirectionaland bi-directional arrayswith uniform or variable fiber

spacings in the FG direction, as well as multi-phase arrays). These configurations can include

functionally graded materials consisting of metallic and ceramic phases that produce continu-

ously changing properties for applications involving severe thermal gradients. In such applica-

tions, metallic-rich regions are placed in the vicinity of the surface exposed to lower tempera-

tures whereas those regions exposed to elevated temperatures are ceramic-rich.

In addition, the present formulation makes it possible to test the applicability of the various

homogenization schemes when predicting the response of composites with large-diameter fibers

subjected to thermal gradients, i.e., when each ply consists of a single row of fibers in the thick-

ness direction. Hence, the fundamental question of how many fibers (or plies) are required in the

thickness direction for classical homogenization schemes to be valid in the presence of thermal

gradients can therefore be finally answered using the present approach.

This question is the first to be addressed in the APPLICATIONS section by presenting

inplane force and moment resultants in a composite with finite thickness reinforced with uni-

directional SiC fibers, produced by the imposed temperature gradient, as a function of the

number of uniformly spaced fibers in the FG direction for a fixed fiber volume fraction. These

results are normalized by the continuum approach predictions obtained by f'trst generating the

effective thermoelastic properties of the individual rows of fibers using a suitable homogeniza-

tion scheme and subsequently employing these effective properties in the thermal boundary-

value problem of an equivalent homogeneous composite. Similarly, a bi-directionally reinforced

composite with uniformly spaced fibers in both inplane directions is considered and the various

quantities of interest compared with those obtained using the corresponding homogenized confi-

guration. Finally, examples illustrating the effect of linearly, quadratically and cubically varying

fiber spacing in the FG direction are compared to the uniformly spaced configuration, and the

advantages of using functionally graded composites with regard to reducing inplane force and

moment resultants are discussed.

2.0 APPLICABILITY OF THE CLASSICAL HOMOGENIZATION SCHEMES

The various micromechanical approaches used to calculate effective properties of compo-

sites include use of simple Reuss and Voigt hypotheses, self-consistent schemes and their gen-

_eralizafions, differential schemes, the Mori-Tanaka method, concentric cylinder models, bound-

ing techniques and approximate or numerical analyses of periodic arrays of inclusions or fibers

in the surrounding matrix phase. A discussion of these various approaches has recently been

given by Aboudi (1991). As stated in the preceding section, the central assumption in applying

these well-established techniques is the existence of an RVE and the ability to apply
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homogeneousboundaryconditionsto suchanelement.Thesehomogeneous boundary conditions

can be specified either in terms of surface displacements

u (S) =E°xj (1)

or in terms of prescribed surface tractions

Ti(S) = o° nj (2)

where n i is the unit outward normal vector on the boundary surface S of the composite, x i are the

Cartesian coordinates of the surface, e ° and c ° are constants, and repeated index implies sum-

marion. For an inhomogeneous medium the constants e° and G ° are the volume averaged strains

and stresses under the prescribed boundary conditions given by equations (1) and (2), respec-

tively. This is a consequence of the following relations

1!1E-ij = ij(Xk) dV = --_ -_(uinj + ujni)dS

_ij=__!Gij(Xk)dV= l 1--_t-_(rixj + rjxi)dS

(3)

(4)

where V is the volume enclosed by the surface S. The above relations hold provided that: the dis-

placements ui are continuous; the tractions Ti are continuous at all interfaces of the heterogene-

ous medium; and body forces vanish. Under the above conditions, the effective elastic moduli

Cijkl are defined as

5ij = cijn n (5)

In practice, the average strains and stresses that result from the application of homogeneous

boundary conditions are calculated for an RVE whose macroscopic behavior is indistinguishable

from the behavior of the composite-at-large. By applying the homogeneous boundary conditions

to the bounding surface of the RVE, which are the same as the boundary conditions applied to

the entire composite, its average behavior can be calculated. This average behavior, in turn,

defines the composite's macroscopic properties. To qualify as an RVE, the volume of the



elementusedto calculateaveragecompositebehaviormust meettwo criteria. First, it must be

sufficiently small with respectto the dimensionsof the composite-at-largein order to be con-

sidereda material point in the equivalenthomogeneouscontinuum(i.e. h _ H, see Figure 1).

Second, it must be sufficiently large with respect to the inclusion phase (i.e. d _ h, see Figure 1)

so that to the first order the elastic strain energy induced by both sets of homogeneous boundary

conditions is the same, making the effective elastic properties in equation (5) independent of the

manner in which boundary conditions are applied (Hill, 1963). in the case of periodic fiber

arrays, the repeating unit cell is interpreted as the RVE provided that the homogeneous boundary

conditions are replaced by either symmetry conditions on the deformation of the unit cell or

periodic boundary conditions, depending on the type of loading.

Clearly, the range of applicability of the aforementioned approaches is limited to compo-

sites reinforced by fibers with very small diameters such as graphite or carbon fibers. In such

composites, a typical RVE contains a sufficiently large number of fibers while occupying a very

small volume of the entire composite, allowing one to disregard boundary-layer effects near the

bounding surfaces of the RVE upon application of either type of homogeneous boundary condi-

tions. As a result, even in the presence of highly inhomogeneous deformation gradients within

the composite-at-large, the field quantifies within the RVE will not vary significantly, thereby

permitting the definition of a material property at a point in the equivalent homogeneous contin-

uum. In contrast, in composites with relatively large-diameter fibers with respect to the thickness

of a single ply, the variation of the quantities of interest within the RVE (assuming that it can be

defined) invalidates the basic assumptions on which the concept of effective properties is based.

These local variations of the field quantities within the RVE may give rise to unexpected

phenomena rooted in the local-global coupling which is neglected in the traditional

micromechanical homogenization schemes. For instance, different thermal conductivities of the

individual phases together with their directional arrangement may produce thermal gradients in

the individual phases which are quite different from the thermal gradients in the homogeneous

composite with equivalent effective properties subjected to identical boundary conditions (Fig-

ure 1). This, in turn, may alter the local conductivity characteristics and produce unexpected

effects such as localized "hot spots" for instance. The size of the RVE in relation to the thickness

of the composite and the temperature gradient obviously will play an important role in the above

scenario.

The preceding discussion raises questions about the applicability of the traditional micros-

copic approach based on the concept of an RVE in the presence of large thermal gradients and

coarse or spatially variable microstructure. In light of this discussion, the current practice of

decoupling the local response from the global response by calculating pointwise effective



thermoelasticpropertiesof functionally gradedmaterialswithout regardto whether the actual

microstructureadmitsthe presenceof anRVE, and subsequentlyusing thesepropertiesin the

global analysisof the heterogeneousmaterial,remainsto be justified. These issueswere dis-

cussedqualitatively as early as 1974by Pagano(1974)with regard to mechanicalloading of

macroscopicallyhomogeneouscomposites.No further work in this areaappearsto have been

publishedin theopenliteraturesincethen.In orderto resolvetheseissues,a model is required

thatexplicitly couplesthemicrostructuraland macrostructuralanalyses.The modelpresentedin

the following sectionis a stepin this directionfor applicationsinvolving compositeswith uni-

formly or nonuniformlyspaced,large-diameterfiberssubjectedto through-the-thicknessthermal

gradients.

3.0 ANALYTICAL MODEL

The heterogeneous composite shown in Figure 2 can be constructed using the basic build-

ing block or repeating unit cell given in Figure 3. This unit cell consists of eight subcells desig-

nated by the triplet (0_13_/).Each index tx, 13, _t takes on the values 1 or 2 which indicate the rela-

tive position of the given subcell along the xl, x2 and x3 axis, respectively. The dimensions of

the unit cell along the x2 and x3 axes, hi, h2, and I l, I2, are fixed for the given configuration

since these are the periodic directions, whereas the dimensions along the x 1 axis or the FG

direction, d_p), d_ °), can vary from unit cell to unit cell. The dimensions of the subcells within a

given cell along the FG direction are designated with a running index p which identifies the cell

number. We note thatp remains constant in the x2-x3 plane. For the other two directions, x2 and

x 3, the corresponding indices q and r are introduced. Thus a given cell is designated by the tri-

plet (p,q,r) forp = 1, 2 ..... M, where M is the number of fibers in the thickness or FG direction,

and an infinite range of q and r due to the periodicity of the composite in the x2 and x3 direc-

tions. The material occupying each subcell within the unit cell can be represented by a different

set of thermoelastic parameters, allowing considerations of multi-phase media as well as bi-

directionally reinforced configurations. It is important to note that the repeating unit cell in the

present framework is not taken to be the RVE whose effective properties can be obtained

through homogenization as explained below. Rather, the RVE comprises an entire column of

such cells spanning the thickness of the plate. Thus the principle of local action cannot be

applied to an individual cell, requiting the response of each cell to be explicitly coupled to the

response of the entire column of cells in the FG direction. This is what is meant by the statement

that the present approach explicitly couples the microstructural details with the global analysis.

The thermal boundary-value problem outlined in the foregoing is solved in two steps. In the

f'trst step, the temperature distribution in the heterogeneous composite is determined by solving
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theheatequationundersteady-stateconditionsin eachsub-regionor cell of thecomposite.Since

thecompositeis periodic in thex2-x3 plane, it is sufficient to determine the distribution of tem-

peratures in a single row of cells spanning the FG dimensions only, provided that appropriate

continuity and compatibility conditions are satisfied. These conditions ensure that the given cell

is indeed indistinguishable from the adjacent cells in the x2-x3 plane. Given the temperature dis-

tribution in the entire volume occupying the composite, internal displacements, strains and

stresses are subsequently generated by solving the equilibrium equations in each sub-region of

the composite subject to appropriate continuity and boundary conditions. As in the case of the

thermal problem, only a single row of cells is considered due to periodic nature of the composite

in the x 2-x 3 plane.

The analytical technique for the above problem is a derivative of the approach developed

by the first author in the treatment of the effective response of doubly and triply periodic compo-

sites, referred to as the method of cells (Aboudi, 1991) and most recently the generalized

method of cells (Paley and Aboudi, 1992; Aboudi and Pindera, 1992). In the original formula-

tion of the method of cells, a continously-reinforced, unidirectional fibrous composite is

modeled as a doubly-periodic array of fibers embedded in a matrix phase. The periodic character

of the assemblage allows one to identify a repeating unit cell that can be used as a building block

to consmact the entire composite. The properties of this repeating unit cell are thus representative

of the properties of the entire assemblage. The unit cell consists of a single fiber subcell sur-

rounded by three mawix subcells. Hence the name method of cells. The rectangular geometry of

the repeating unit cell allows one to obtain an approximate, closed-form solution for the stresses

and strains in the individual subcells given some macroscopically homogeneous state of strain or

stress applied to the composite. The solution is obtained by approximating the displacement field

in each of the subcells in terms of the displacement of the center of the subcell and a linear

,. _(co _(1_), _(_)expansion in the local coorctmates x , centered at the subcell's mid-point. The coeffi-

cients or microvariables associated with the linear terms in the expansion, and the unknown dis-

placements at the subcell centers are obtained by satisfying continuity of tractions and diplace-

ments in an average sense between individual subcelis of a given cell, and between adjacent

cells. In addition, a connectivity condition is imposed on subcell center displacements of a

given cell with respect to the corresponding subcell center displacements in adjacent cells, that

provides the necessary expressions for homogenized strains in terms of the displacement gra-

dients of the subcell mid-points. The approximate solution to the given boundary-value problem,

in turn, is used to determine macroscopic (average) or effective properties of the composite. In

the generalized method of cells, the repeating unit cell is subdivided into an arbitrary number of

subcells which makes it possible to include multiple phases and additional geometric detail in
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modelingtherepeatingunit cell. Theprocedurefor analyzinglocalstressand strainfields in this

case,however, is the sameasthat usedin the original methodof cells (i.e., by approximating

local subcell displacementsusing linearexpansionsin termsof local coordinatesin the indivi-

dualsubcells).

Conversely,in the presentanalysisa higher-order theory is requiredin order to capture

the local effects createdby the thermalgradient,the microstructureof the composite,and the
finite dimensionin the FG direction.Accordingly,in the thermalproblemthetemperaturefield

in each subceUof a repeatingunit cell is approximatedusing a quadratic expansion in local

coordinatesalong the threecoordinatedirectionsassociatedwith the given subcell.In the solu-

tion for the local strainsandstresses,thedisplacementfield in theFG direction in eachsubcell

is also approximatedusinga quadratic expansionin local coordinateswithin the subcell.The

displacementfield in the x2 and x3 directions, however, is still approximated using a linear

expansion in local coordinates to reflect the periodic character of the composite's microstructure

in the x2-x3 plane.

The unknown coefficients associated with the linear and quadratic local coordinates in both

the thermal problem and the solution for internal strains and stresses are obtained by satisfying

continuity of displacements and tractions and boundary conditions in an average sense along

similar lines as those employed in the original and generalized method of ceils. A fundamental

difference, however, between the present solution and the previous treatments lies in the fact that

the considered composite contains elements of both material and structural effects which cannot

be treated (i.e., decoupled) using the classical homogenization schemes. Accordingly, the con-

nectivity conditions (which provide expressions for the homogenized strains in terms of the sub-

cell mid-point displacement gradients) are not imposed in the FG direction in solving the given

boundary-value problem since it is not possible to define homogenized strains in this direction

using classical micromechanical concepts. This is due to the absence of homogeneous boundary

conditions that hold for both the repeating unit cell and the composite-at-large, as well as the

finite dimension of the composite in the FG direction. These features set the present model apart

from the classical micromechanical approaches currently employed by researchers working in

the area of functionally gradient materials.

An outline of this new analytical approach for both the thermal and mechanical problem

that summarizes the governing equations for the determination of the temperature and displace-

ment fields in the individual subcells will now be given. A detailed derivation of these equations

is presented in the Appendix so as not to obscure the basic concepts by the involved algebraic

manipulations necessary to generate the governing equations.
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3.1 Thermal Analysis: Problem Formulation

Suppose that the composite material occupies the region 0 <Xl <H, IX2 I < 0% Ix 3 I < oo.

Let the composite be subjected to the temperature TT on the top surface (x I = 0) and to TB on

the bottom surface (x I = H). Also, let M denote the number of cells in the interval 0 _<x 1 -< H,

M

i.e., M = n I _ (d_ p) + d_)). For p = 2 ..... M-1 the cells are internal, whereas for p = 1 and
p=l

p = M they are boundary cells.

3.1.1 Heat Conduction Equation

For a steady-state situation, the heat flux field in the material occupying the subcell (o:13)')

_(a) ld(p ) I_) 1 h i_7) 1
of the p-th cell, in the region defined by Xl I < 2 (x , I < _ 13, I < _l. t, must

satisfy the equation:

_)lqt ctl_') + 02q_ al_/) +03q[ a[_') =0 (6)

_ __(a) _/_13), _3 = •where Ol = d/Ox1 ' 02 = _/_7) The components of the heat flux vector q!(Xl_) in

this subcell are derived from the temperature field according to:

q_af_7) = _k_(_)i)iT(af_v) , (i : 1, 2, 3; no sum) (7)

where k! a_) are the coefficients of heat conductivity of the material in the subcell (ocl3"/), and no

summation is implied by repeated Greek letters in the above and henceforth.

Given the relation between the heat flux and temperature, a temperature distribution that

satisfies the heat conduction equation is sought subject to the continuity and boundary conditions

given below.

3.1.2 Heat Flux Continuity Conditions

The continuity of the heat flux vector q(_') at the interfaces separating adjacent subcells

within the repeating unit cell (p,qir) is fulfilled by imposing the relations

(p,q,r) (p,q,r)

qtll_') I_(l l) =d_)/2 -- qf 21_'t) I_(_2) =_a_,)/2 (8a)

v
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(p,q,r ) (p,q,r)

q[alv) I_,)=ht/2 = q[_V) l_2)=-h2/2 (8b)

(p,q,r) (p,q,r)

Ig, =/112 = q_a_2) 1_2, =-12/2 (8c)

In addition to the above continuity conditions within the p-th cell, the heat flux continuity at the

interfaces between neighboring ceils must be ensured. The conditions that ensure this are given

by

(p+l,q,r) (p,q,r)

qt1[37) I_<l1) =_d_'+1)/2 = qt213_') I_ ) =d_)/2
(9a)

(p,q+l,r) (p,q,r)

q[a17) I_l)=-hi/2 ---- q[Ct2_') [_2a) =h2/2 (9b)

(p,q,r+l) (p,q,r )

q_a_l) Ig)=-/1/2 "- q_af_2) =12/2 (9C)

3.1.3 Thermal Continuity Conditions

The thermal continuity conditions at the interfaces separating adjacent subcells within the

representative cell (p,q,r) are given by relations similar to the corresponding heat flux continuity

conditions, i.e., equations (8a) - (8c),

(p,q,r) (p,q,r)

T(II_) [_(1)=d_V)/2 -- r (21_Y) l_-(l2)=_d,_)/2
(lOa)

(p,q,r) (p,q,r)

T(=r0l_" =hi/2 = T (_') I-(2)x2 =-h2/2 (10b)

(p,q,r ) (p,q,r )

T(afJl)I_)=11/2 = T(af_2)l_7)=_t2/2 (10c)

while the thermal continuity at the interfaces between neighboring cells is ensured, as in the case

of the heat flux field, by requiting that

13



(p+l,q,r) (p,q,r)

T(*V) Id )=_#+,_ = T(2_) Id)=#,,2 (11a)

(p,q+l,r) (p,q,r)

= T(Ct2"/) I_ 2)T(alv) I_ 1) =-hl/2 =h2/2
(llb)

(p,q,r+l) (p,q,r)

T (°tl31) I_ ') =-11/2 = T(al_2) I_ 2) =12/2 (11c)

3.1.4 Boundary Conditions

The final set of conditions that the solution for the temperature field must satisfy are the

boundary conditions at the top and bottom surfaces. The temperature in the cell p = 1 at the top

surface must equal the applied temperature TT, whereas in the cell p = M at the bottom surface

the temperature must be TB. That is,

(1,q,r) _(1) 1 d(_l)
r(l_v)! = TT, x1 =-_

(12)

(M,q,r) _(2) 1 d_m)
T (2137) ] = TB, X l = "_ ..

(13)

3.2 Thermal Analysis: Solution

The temperature distribution in the subcell (ot13_/)of the p -th cell, measured with respect to

a reference temperature TR, is denoted by T (at_'_). We approximate this temperature field by a

second order expansion in the local coordinates _(1a), x_), and _'t) as follows:

d _)2 1 .__(13)2 h_

1,__(_)2_ -_ )_,,_)+ _ _)_,,_)_ +r(al]q') = T_°t[_Y) + X(la)Tt°@/) + "2-i'3xl 4 2 "_'3x2

1 ..._(_,)2 12 _1')

7tJx3 -T_T_ (14)

where T_ctl]q'), which is the temperature at the center of the subcell, and T} cxl_v)( i = 1..... 4) are

unknown coefficients which are determined from conditions that will be outlined subsequently.
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Henceforth, for notational simplicity and in view of the fact that the composite material is

periodic in the x2-x3 plane, the designation (p,q,r) for the p-th cell will be replaced by (p)

whenever appropriate in this section and in the corresponding section dealing with solution to

the mechanical problem.

Given the five unknown quantities associated with each subcell (i.e., T_af_'l), ..., T_a_'y)) and

eight subcells within each unit cell, 40M unknown quantities must be determined for a compo-

site with M rows of fibers in the FG direction. These unknown quantities are determined by first

satisfying the heat conduction equation, as well as the first and second moment of this equation

in each subcell. This is carried out in a volumetric sense for each subcell in view of the tempera-

ture field approximation given by equation (14). For this reason both Fn'st and second moments

must be considered. Subsequently, continuity of heat flux and temperature is imposed in an aver-

age sense at the interfaces separating adjacent subcells, as well as neighboring ceils. Fulfillment

of these field equations and continuity conditions, in conjunction with the imposed thermal

boundary conditions at the top and bottom surfaces of the composite, provide the necessary 40M

equations for the 40M unknown coefficients in the temperature field expansion. We begin the

outline of the sequence of steps to generate the required 40M equations by first considering an

arbitrary p -th cell in the interior of the composite material (i.e. p = 2 ..... M-I). This will pro-

duce 40(M-2) equations. The additional equations are obtained by considering the boundary

cells (i.e. p = 1 and M). For these cells, most of the preceding relations will also hold, with the

exception of some of the interfacial continuity conditions between adjacent cells. These condi-

tions are replaced by the specified boundary conditions.

3.2.1 Heat Conduction Equations

In the course of satisfying the steady-state heat equation in a volumetric sense, it is con-

venient to define the following flux quantities:

d_)/2 hf_/2 l_tl2

t(l,/n,n)- V_a_l ) -4 )/2- Z2- /2

,,,,,---(_')-n_aR,,_,_(a),-(l_),-('t)
(15)

where 1, m, n = 0, 1, or 2 with l + m + n < 2, and v_a_) = d_)h_ l,t is the volume of the subcell

(o_/) in the p -th cell. For l = m = n = 0, Q!_,o) is the average value of the heat flux com-

ponent q!a_,t) in the subcell, whereas for other values of (l,m,n) equation (15) defines higher-

order heat fluxes. These flux quantities can be evaluated explicitly in terms of the coefficients

T} a_) by performing the required volume integration using equations (7) and (14) in equation
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(15). This yields thefollowing non-vanishingzeroth-orderandfLrst-orderheatfluxes in termsof

theunknowncoefficientsappearingin thetemperaturefield expansion:

4

o 1

(16)

(17)

(18)

(19)

Satisfaction of the zeroth, f'trst and second moment of the steady-state heat equation results

,,-,(at,lS._,), in the differentin the following eight (8) relationships among the first-order heat fluxes _,(l,m,n)

subcells (o_'y) of the p-th cell, after some involved algebraic manipulations (see the Appendix):

at 2t 1 -0 (20)

where the triplet (o_[3_,)assumes all permutations of the integers 1 and 2.

3.2.2 Heat Flux Continuity Equations

The continuity of heat fluxes at the subceU interfaces, as well as between individual cells,

associated with the X l (FG) direction, equations (8a) and (9a) imposed in an average sense, is

ensured by the following relations:

Q_(_,,t,o)/h_ + Q_Y,d,1)/l,y +
[12Q_,,t,o)/h_ + 12Q_,x)/I_ ]_')+ 6-d--CTt 2 2

6dL/'-_) . 2 2 ](p-_) 1 (p) (t,-_)
___[Q_2(_?t,o)/h_ +Q_(_,,_,I)/I, Y + -_-j- [ Qt_d,o) I - Q_,,_,o) I ]=o (21)

and
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(p)

Qt_[_(_,o) [ 1 2

_-1)

+ l -+ 1Qt [ yd,o) I + 2 2 W>

o)+ ](p-r) (22)

while the equations that ensure heat flux continuity at the subcell interfaces associated with the

x2 andx3 directions, equations (8b) and (8c) are given by

ct l a_('_,_1)/i2[Q_(_I)/I 1 + a 2 ](P)=0

(23)

(24)

We note that equations (9b) and (9c) are identically satisfied by the chosen temperature field

representation due to the periodicity of the composite in the x 2-x3 plane.

Equations (21) - (24) provide us with sixteen (16) additional relations among the zeroth-

order and fin'st-order heat fluxes. These relations, together with equation (20), can be expressed

in terms of the unknown coefficients T} c_t_')(i = 1.... ,4) by making use of equations (16) - (19),

providing a total of twenty-four (24) of the required forty (40) equations necessary for the deter-

mination of these coefficients in the p -th cell.

3.3.3 Thermal Continuity Equations

An additional set of sixteen (16) equations necessary to determine the unknown coefficients

in the temperature field expansion is subsequently generated by the thermal continuity condi-

tions imposed on an average basis at each subcell and cell interface. Imposing the thermal con-

tinuity at each subcell interface, equations (10a) through (10c), we obtain the following condi-

tions for the p-th cell:

1 )2 21]y)

1 d_P)2T_ll3_,)](p)= [ T_)213_,)_d_)Tt213V) +_-d_ v T_ ](P)
[ T_ 113)') + d_)Tt 1_) + -_ - (25)

1 z,2,.r(O_17) ](p) T_Ct23,) 1 z.2-r(a2)') ](p)
[ T_ cdY) + -_-¢' 1"3 = [ + "4"n2"3

1,2.r(Ot131) ](p) T_Ctl_2) 1,2.r(Cq_2)l(p)
[T_) °q_l) -'1- -_", 1z 4 "-[ + "_"'2" 4 •

(26)

(27)
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The continuity of temperature between neighboring cells in the FG direction, equation (1 la), on

the other hand, yields

rt + 1 )2 (28)[ T_I_v ) _ 21 d_P+l)T_l_v)_ + _.a_vl +1)2T_1_'0 ](p+l) = [ T_2_ ) + 1 ) 2_v) _-d_ T_ ](v)

We note that the continuity of temperature between neighboring cells in the x2 and x3-

directions, equations (1 lb) and (1 lc), is automatically satisfied by the chosen temperature field

representation which reflects the periodic character of the composite in these directions.

3.3.4 Governing Equations for the Unknown Coefficients in the Temperature Expansion

The equilibrium equations, equation (20), together with the heatflux and thermal continuity

equations, equations (21) - (24) and equations (25) - (28), respectively, form altogether 40 linear

algebraic equations which govern the 40 field variables T_ _1_3')(i = 0, ..., 4) in the eight subcells

(ot13_') of an interior cell p; p = 2 ..... M-1. For the boundary cells p = 1 and p = M, a different

treatment must be applied. For p = 1, the governing equations, equations (20), and (23) - (28),

are operative. Relations (21) - (22), on the other hand, which follow from the continuity of heat

flux between a given cell and the preceding one are not applicable. They are replaced by the

condition that the heat flux at the interface between subcell (l13T) and (215y) of the cell p = 1 is

continuous, as well as the applied temperature relation at the surface x 1 = 0. For the cell p = M,

the previous equations are applicable except equations (28) which are obviously not operative.

These equations are replaced by the specific temperature applied at the surface x 1 = H.

The governing equations at the interior and boundary cells form a system of 40M linear

algebraic equations in the unknown coefficients T_altq') tp (i = 0 ..... 4; ot, lS,_,= 1,2; p = 1..... M).

Their solution determines the temperature distribution within the FG composite subjected to the

boundary conditions (12) and (13). The final form of this system of equations is symbolically

represented below

_¢T = t (29)

where the structural thermal conductivity matrix 1¢ contains information on the geometry and

thermal conductivities of the individual subcells (otl3y) in the M cells spanning the thickness of

the FG plate, the thermal coefficient vector T contains the unknown coefficients that describe

the thermal field in each subcell, i.e., T = (T_ 111)...... T_ 22) ) where T_pal_v) =

(To, T1, T2, T3, T4 )(pOtl3_,),and the thermal force vector t = (T r, 0 ..... 0, TB ) contains
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informationon theboundaryconditions.

3.3 Mechanical Analysis: Problem Formulation

Given the temperature distribution generated by the applied surface temperatures TT and TB

obtained in the preceding section, we now proceed to determine the resulting displacement and

stress fields. This is carried out for uniform normal (i.e., no shearing) mechanical loading

applied to the surfaces of the composite.

3.3.1 Equations of Equilibrium

The stress field in the subcell (o_13y) of the p-th cell generated by the given temperature

field must satisfy the equilibrium equations

_1(3t_13T ) + _20_ 1_7)+ _30_ I]q) =0, j= 1, 2, 3 (30)

where the operator _i has been def'med previously. The components of the stress tensor, assum-

ing that the material occupying the subcell (et[]q) of the p-th cell is orthotropic, are related to the

strain components through the familiar generalized Hooke's law:

(31)

where c}_ r) are the elements of the stiffness tensor and the elements r!_ I_') of the so-called ther-

mal tensor are the products of the stiffness tensor and the thermal expansion coefficients. The

components of the strain tensor in the individual subcells are, in turn, obtained from the Strain-

displacement relations

E_) = l c_.u(CX_7) + _juf a_q)) i, j = 1, 2, 32_j
(32)

Given the relation between the stresses and displacement gradients obtained from equations (31)

and (32), a displacement field is sought that satisfies the three equilibrium equations together

with the continuity and boundary conditions that follow.
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3.3.2 Traction Continuity Conditions

The continuity of tractions at the interfaces separating adjacent subcells within the repeat-

ing unit cell (p,q,r) is fulfilled by requiring that

(p,q,r ) (p,q,r )

(_t_13_') I_(__, =d_','2 = Ct2/I_'Y)I_(_2, =-a_",2 (33a)

(p,q,r ) (p,q,r )

ot?l_/) i i_,):hl/2 =6[_12_t) Ir_2)=_h2/2 (33b)

(p,q,r) (p,q,r)

(_t? [_1> 1,_ 1) :11/2 =(_?_2) ]_)=-12/2 (33c)

In addition to the above continuity conditions within the p-th ceil, the traction continuity at the

interfaces between neighboring cells must be ensured. These conditions are fulfilled by requiring

that

(p+l,q,r) (p,q,r)

(34a)

(p,q+l,r) (p,q,r)

(_i? l'Y) I =-hi�2 = (_t_ t2"f) =h_,2 (34b)

(p,q,r +l) (p,q,r)

(_131) [ _._1)=-It/2 =(_t?[32) ] x_2)=12/2
(34c)

3.3.3 Displacement Continuity Conditions

At the interfaces of the subcells within the repeating unit cell (p,q,r) the displacements

u = (u 1, u2, u3) must be continuous,

(.o,q,r) (p,q,r)

u(l_) ] _1)=a_)12 = u(21_r)I _)=--a_ )/2 (35a)

(p,q,r) (p,q,rP

U(Ctl'Y) I r_ ') =htl2 = u(Ct2_')I r(22)=-h2/2 (35b)

(p,q,r ) (p,q,r)

= u(Ctl_2) I r_2) (35c)I_((x131) [ ._(1)=11/2 ---12/2

while the continuity of displacements between neighboring cells is ensured by requiring that
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(p+1,q,r) (p,q,r)

U (1[$_') I _(I) = _d_+l)/2 = U (2[_') [ _(12) = d_ )/2
Xl

(p,q+l,r) (p,q,r )

u_=lr)l_1'=-h: =_(_:_)1_'=h2,2

(p,q,r+l) (p,q,r )

u<_1)I_,=__:=u<'_x)I_2>=12:2

(36a)

(36b)

(36c)

3.3.4 Boundary Conditions

The final set of conditions that the solution for the displacement field must satisfy are the

boundary conditions at the top and bottom surfaces. The normal stress in the cell p = 1 at the top

surface must equal the normal stress fit),

(l,q,r) _(I)= _Id_i) (37)
_t1113_')I = f(t), Xl 2 "

with f(t) describing the temporal variation of this loading, whereas in the cell p = M at the bot-

tom surface the condition that the surface x 1 = H is rigidly clamped (say) is imposed

(M,q,r)

ut213_') I - 0 _) 1 d_M) (38)

For other types of boundary conditions, equation (38) should be modified accordingly.

3.4 Mechanical Analysis: Solution

Due to symmetry considerations, the displacement field in the subeell (al_') of the p-th

. _(a) _(I_), and _3_') as
cell is approximated by a second-order expansion in the local coordinates xl , x2

follows:

1..,_(a)2 ld_)2)Uta_,t ) + 1..,_(13)2 1,.2 ,,,toting,)utah>=wt_> +_:>,t _> +_t,xx - _-t,x: - _-_,-

1 ,.,_(7)2 ll_)Wta_v)
+ _t_x3 - 4
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-

(39)

where wt a_'), which are the displacements at the center of the subcell, and Ut _v), V_al_),

wtaf_v), ¢ taft'Y), Z_al_v), and V_al_') must be determined from conditions similar to those employed

in the thermal problem. In this case, there are 56M unknown quantifies. The determination of

these quantifies parallels that of the thermal problem. Here, the heat conduction equation is

replaced by the three equilibrium equations, and the continuity of tractions and displacements at

the various interfaces replaces the continuity of heat fluxes and temperature. Finally, the boun-

dary conditions involve the appropriate mechanical quantifies. As in the thermal problem, we

start with the internal cells and subsequently modify the governing equations to accommodate

the boundary cells p = 1 and M.

3.4.1 Equations of Equilibrium

In the course of satisfying the equilibrium equations in a volumetric sense, it is convenient

to define the following stress quantities:

a )12 h C2 zv 2S(aB.r) , 1 _(a) )t
_ . ) _ (xl,j (,,m,n) V_7)-d! /2-h_,2-_12

(40)

For 1 = m = n = 0, equation (40) provides average stresses in the subcell, whereas for other

values of (l,m,n) higher-order stresses are obtained which are needed to describe the governing

field equations of the higher-order continuum. These stress quantities can be evaluated expli-

citly in terms of the unknown coefficients Ut a13v)..... _t a13v)..... V_°_133')by performing the

required volume integration using equations (31), (32) and (39) in equation (40). This yields the

following non-vanishing zeroth-order and ftrst-order stress components in terms of the unknown

coefficients in the displacement field expansion:

(41)

(42)

(43)
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1 _) 2_alh')
--gcl hp.,

(44)

(45)

(46)

Satisfaction of the equilibrium equations results in the following eight (8) relations among

•.(a_,t) . in the different subcells (ot[]q,) of the p-th cell,the volume-averaged first-order stresses o,j(l.m.n)

after lengthy algebraic manipulations (see the Apendix):

(47)

where, as in the case of equation (20), the triplet (a[3T) assumes all permutations of the integers 1

and 2.

3.4.2 Traction Continuity Equations

The continuity of tractions at the subcell interfaces, as well as between individual cells,

associated with the x 1 (FG) direction, equations (33a) and (34a) imposed in an average sense, is

ensured by the following relations:

t 12St_(_!l.0)/h_ + 12St_!o.1)/l_ ](p) + 6 t St_!l.o)/h_ + S_!o.1)/12 ](p) +

q,) (p-i)

6 d_-1> " d_ )--_[ St_!,.o)<hg + St2_!o.1)/1_ ](p-l)+ 1 [ Si21_(_?o.0)I _ St21_(Z!0,0) [ ] =0(48 )

(P) 1 Sc21_)o o [ (p) 1 S(2_,)o o" [ (P-D
= "_- _1_(5,, ) + _" 11(0, , ) + 3d_ )[ S_!l,o)lhg + S]_!O'I)II_](P)-

3d?-l) t St2_!l,o)/hg + S_2_(_!0,i)/12 ] (p-I) (49)

while the equations that ensure traction continuity between individual subcells associated with

the x2 and x3 directions, equations (33b) and (33c), are given by
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a2 ) /h2 ](P)[ St_j!l,0)lhl + Sl2(_!l,O ) =0

t + ]0"=o

col )s_2(_':o,o)I

1

(p) (p)

=s!2_!o,o)I

q,) (p)

= s_)o,,) I

(5O)

(51)

(52)

(53)

We note that equations (34b) and (34c) are identically satisfied by the chosen displacement field

representation due to the periodic character of the composite material in the x2-x3 plane.

Equations (48) - (53) provide us with twenty-four (24) additional relations among the

zeroth-order and first-order stresses. These relations, together with equation (47), can be

expressed in terms of the unknown coefficients Ut c_l_')..... _t cg_') ..... V_ a13_')by making use of

equations (41) - (46), providing a total of thirty-two (32) of the required fifty-six (56) equations

necessary for the determination of these coefficients in the p-th cell.

3.4.3 Displacement Continuity Equations

The additional twenty-four (24) relations necessary to determine the unknown coefficients

in the displacement field expansion are subsequently obtained by imposing displacement con-

tinuity conditions on an average basis at each subcell and cell interface. The continuity of dis-

placements at each subcell interface of the p -th cell, equations (35a) through (35c), is satisfied

by the following conditions:

1 ) 1_,) 4 -ul_l[ wt 11_7)+ _d_ p t_i + 1 ._2rr(ll30 ](p)

1 h2V(a2v) ](p)[ wt_lr)+ _- 1 ,

= [ w_2[_v) 1 ) 213_) 1 d2U(213),) ](p)-_--d_ ¢t +_ 2 , (54)

1 h2_z(Ct2V) ](p)
= [ w_a2v) + 7,,2-1 (55)

(p) (p)

h 1X_1_) [ = _h 2)_23') ] (56)

1/2W(CCl31) ](p) wtal_2) 1 12WtCt132) ](p)
[Wi °c[31)+-_" 1 1 =[ +-_- 2 (57)

(p) (p)

/ 1_l/tet[_l) ] = _/2_a[12) I (58)

24



while the continuity of displacements between neighboring cells in the FG direction, equation

(36a), requires that

[will,y) _ _d_pl +1) _t 113)')+ _1 d_+l)2uttl_Y)](p+l)_ = [wt211y) + 2d_) _t2_3') + ld_)2Ut21_Y) ] (p) (59)

The displacement continuity between neighboring cells in the x 2 and x3-directions, equa-

tions (36b) and (36c), is automatically satisfied by the chosen displacement field representation

which reflects the periodic character of the composite in these directions.

3.4.4 Governing Equations for the Unknown Coefficients in the Displacement Expansion

The equilibrium equations, equation (47), together with the traction and displacement con-

tinuity equations, equations (48) - (53) and equations (54) - (59), respectively, form altogether

56 equations in the 56 unknowns wf a_Y), _t _'t), Ut a_), Vt a_Y), Wt _Y)' Z_Y)' V_a_Y)' which

govern the equilibrium of a subcell (czar,) within the p-th cell in the interior. As in the thermal

problem, a different treatment must be adopted for the boundary cells p = 1 and p = M. For

p = 1, equations (47), (50) - (53), and the displacement continuity relations, equations (54)

through (59), are operative, whereas equations (48) and (49), which follow from the continuity

of tractions between a given cell and the preceeding one, are not applicable. These eight equa-

tions must be replaced by the conditions of continuity of tractions at the interior interfaces of the

cell p = 1 and by the applied normal stress at x 1 = 0, equation (37). For the cell p = M, the previ-

ously derived governing equations are operative except for the four relations given by equations

(59) which are obviously not applicable. These are replaced by the condition that the surface

x 1 = H is rigidly clamped, equation (38). Consequently, the governing equations at both interior

and boundary cells form a system of 56M linear algebraic equations in the field variables of the

cells along 0 _<X l -H. The final form of this system of equations is symbolically represented

below

K U = f (60)

where the structural stiffness matrix K contains information on the geometry and thermo-

mechanical properties of the individual subcells (o_13T) in the M cells spanning the thickness of

the FG plate, the displacement coefficient vector U contains the unknown coefficients that

describe the displacement field in each subcell, i.e., U = ( Ut hi) ...... U_ 22) ) where U (°tf_Y)=

(wl, _1, U1, V1, W1, Z2, W3 )(pat_), and the mechanical force vector f = (f(t), 0 ..... 0)
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containsinformation on the boundary conditions.

4.0 APPLICATIONS

The approach outlined in the foregoing is employed to investigate the response of thin-

walled composites subjected to a thermal gradient in the through-the-thickness direction, i.e., in

the FG direction. The investigated composites are reinforced with continuous SiC fibers embed-

ded in a titanium aluminide matrix, with the fiber volume fraction, vf, equal to 0.4. The tempera-

ture Tr at the top surface of the composite (x 1 = 0) is 0°C while the temperature TB at the bot-

tom surface (x 1 = H) is 500°C. The composite is constrained from deforming due to the applied

thermal loading by imposing zero displacement at the bottom surface. At the top surface, the

normal traction component is required to vanish (i.e., _lZ = 0).

The properties of the fiber and matrix phases are provided in Table 1. We note that these

properties are assumed to be independent of temperature. Although this may be a reasonably

good approximation for the SiC fiber, the titanium matrix properties will change with tempera-

ture in the range of the imposed thermal gradient across the plate's thickness. This temperature

dependence will also be accompanied by viscoplastic effects that are not considered herein.

These effects will be considered in a follow-up communication. In view of the lack of accurate

knowledge of the thermal conductivity for the SiC fiber, four values of the fiber's thermal con-

ductivity were employed in generating the results. These values resulted in fiber-to-matrix con-

ductivity ratios, K:m/ _f, of 50, 25, 5 and 2.2, providing additional insight into the effect of the

conductivity mismatch on the resulting temperature and stress fields.

As a first step, unidirectional composites with fibers uniformly spaced in the thickness

direction and oriented in the x3 direction are considered. Results for temperature distributions,

stresses and inplane force and moment resultants generated with the present approach that expli-

citly couples local micromechanical and global structural effects are compared with predictions

based on the continuum and a "primitive" micromechanics approaches in which local and global

effects are decoupled. The continuum results are obtained by first generating the effective pro-

perties of the individual rows of fibers along the x2 coordinate, or "plies", using the generalized

method of cells without regard to whether a representative volume exists or not. That is, these

effective properties are generated on the premise that no coupling exists between local and glo-

bal responses. This is the standard approach currently employed by researchers working in the

area of micromechanics. These effective properties, given in Table 2, are subsequently used in

the thermal boundary-value problem of an equivalent homogeneous composite subjected to the

specified thermal loading. With the knowledge of the continuum or macroscopic thermal fields,

the stresses in the individual phases of a repeating unit cell are then calculated by applying an
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average temperature over a given cell, treating it as an RVE within the framework of the gen-

eralized method of cells. In addition, bi-directionally reinforced composites with uniform fiber

spacing in the FG direction are also considered, with fibers oriented along the x3 axis in some

layers and along the x2 axis in others. Again, comparison with the results of the continuum

approach is given, using cross-ply laminates subjected to the imposed thermal gradient. The

solution to the thermal boundary-value problem of unidirectional and bi-directional laminates

based on the continuum approach is briefly outlined in Section 4.1. We note that the continuum

approach yields results that, for the considered geometry and applied boundary conditions, are

identical to those that would be obtained using the classical lamination theory (cf. Christensen

(1979)). Thus, we employ the familiar terminology used in the classical lamination theory in

developing the pertinent solution based on the continuum approach in Section 4.1.

Finally, application to functionally graded composites (or those with a tailored mesostruc-

ture) is illustrated by considering unidirectional composites with nonuniformly spaced fibers in

the FG direction. Only continuous fiber configurations are considered with fibers oriented along

the x3 coordinate. Data generated for linear, quadratic and cubic variation in the fiber spacing is

compared with results obtained for configurations with uniformly spaced fibers occupying the

same total volume of the composite.

4.1 Continuum Approach (Classical Lamination Approach)

Consider a laminate composed of M plies subjected to a thermal gradient by the imposition

of the temperature TT on the top surface and TB on the bottom surface, Figure 4. The total thick-

ness of the laminate is H with ti representing the thickness of individual plies. Let h 0 = -H/2

designate the coordinate of the top surface of the first ply measured from the mid-plane of the

laminate denoted by z = 0. The top surface of the i-th ply is thus given by h i = hi_l + ti for

i = 1, 2, .... M. The solution of the Laplace's equation for the given geometry subjected to the

specified boundary conditions yields a linear temperature distribution in each ply. Letting

T1 = TT, the temperature at the interfaces of the laminate can be shown to be given by:

where

ri+ 1 = r i + AT i , i = 1, 2, ... , M (61)

ti Tr-r8
ATi-

Mt i

j=l Kj

(62)
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We note that in our case, Ki are the effective transverse conductivities !¢T of the i-th ply calcu-

lated using the method of cells (see Table 2) and t i = 199 lain.

Given the temperature distribution throughout the laminate, the inplane stress distributions

in the i-th lamina in the absence of mid-plane strains and curvatures (which is the situation here

for the specified boundary constraints) are simply calculated in the following manner:

(63)

where _(i) and ot//)_y) are the transformed reduced stiffness matrix and the thermal expansion

coefficient vector, respectively, of the i-th ply referred to the laminate coordinate system x-y.

The resulting inplane force and moment resultants can be obtained by multiplying by -1 the

so-called thermal inplane force and moment resultants defined as follows:

+H/2

N T = _ O.@(x_y)T(z) dz
.-H /2

+H /2

MT = I O-'lX(x-Y) T(z) z dz
-H /2

(64)

(65)

where the previously defined _9 and _x-y) are piecewise uniform throughout the laminate, and

the superscript (i) that associates these quantities with the i-th ply has been omitted for obvious

reasons. Substitution of the linear temperature variation into equations (64) and (65) and per-

forming the necessary integration yields the following explicit expressions for N r and M r in

terms of the previously defined quantities:

1 ATi (h2i_h2_,)_____i[hi_l(hi_hi_])]] (66)NT = _Q'(i)clli)--Y)[Ti(hi- hi-l)+ 2 ti
i=1

M r M =(i) _i) r 1 .,. ,,_2 _ h/2_1 ) + 1 ATi (h 3 3---- - hi-1 )
= _,fd Ot_x-y)t-_litni 3 ti

i=1

4.2 Response o1' Composites with Uniform Mesostructure

1 ATi hi-1 (h 2 - h21 )] (67)
2 ti

Here, the response of unidirectional and bi-directional composites with uniformly spaced

fibers is investigated. The results are useful in answering the fundamental question of the
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validity of the classical homogenization scheme in the presence of thermal gradients and finite

boundary effects. Just as importantly, the results give useful estimates on the number of fibers

that are required in the thickness direction to produce data that can be reliably generated with the

standard homogenization approach wherein the micromechanics and macromechanics analyses

are decoupled (which clearly is less expensive than the present scheme).

4.2.1 Unidirectional Composites

Consider the response of a continuously-reinforced unidirectional composite having a timed

thickness of 199 _tm with fibers oriented in the x3 direction. This thickness is based on a single

ply of a SiC/Ti composite with 40% fiber volume and a fiber diameter of 142 l.tm. The thermal

conductivity of the SiC fiber is taken to be fifty (50) times that of the matrix, which provides the

greatest mismatch between the fiber and matrix thermal conductivities herein considered. The

effect of varying the thermal conductivity mismatch on the thermal and stress fields, and the

resulting force and moment resultants, will be investigated in Section 4.2.2. The objective in this

section is to determine the number of fibers in the thickness direction that are required for the

results to approach those obtained using the standard homogenization procedure.

To this end, we consider configurations with M number of fibers, where

M = 1, 2, 3, 5, 8, 12, 16, and 20. The volume of fibers occupying the total volume of the com-

posite, i.e., the fiber volume fraction, is fixed at 0.40 for all the considered cases. Since the

thickness of the composite is held constant, the size of the fibers must decrease when the number

of fibers, M, is increased. However, since the problem is linear, the above is equivalent to

increasing the number of fibers in the thickness direction by adding more layers in this direc-

tion, and thus increasing the thickness of the plate. For this reason the various distributions in the

thickness direction are given as a function of the normalized coordinate x 1/M-

The results generated for such a large number of configurations provide a comprehensive

library that can be used in future work to verify the applicability of various schemes in analyzing

the thermal response of composites with tailored or coarse microstructures. The results also pro-

vide a continuous spectrum whose limiting behavior can be used as a basis for verification of the

developed scheme. A more quantitative verification of the developed model based on the finite-

element analysis of a finite thickness composite plate with a finite number of through-the-

thickness fibers will be provide elsewhere. Further, these results demonstrate the power of the

developed analytical model, in that a researcher can efficiently generate results by merely chang-

ing a few lines in the input data f'fle of a computer code each time a new configuration is investi-

gated.

29



First, temperaturedistributions are presentedfor six of the eight investigatedconfigura-

tions, namelyM = 1, 3, 5, 8, 16, and 20. Figure 5 illustrates the temperature distributions in the

representative cross-section (RCS) along the x l direction that includes both matrix and fiber

phases (see Figure 2), whereas in Figure 6 the temperature distributions for a RCS containing

matrix phase material are shown. Included in the figures are the linear distributions (denoted by

dashed lines) obtained from the homogenized thermal boundary-value problem based on the

lamination theory (i.e., continuum) equations. In the RCS containing both phases, the tempera-

ture profiles exhibit "staircase" patterns, charactarized by jumps or discontinuities between the

fiber and matrix phases indicated by connected vertical lines. The temperature gradient in the

fiber phase is much smaller than the gradient in the matrix phase since the thermal conductivity

of the SiC fiber is much higher (fifty times) than that of the Ti-AI matrix (see Table 1). The

staircase patterns intersect the linear distributions at M + 1 locations, as the step size decreases

with increasing number of fibers (M) in the thickness direction. Alternatively, the temperature

profiles in the RCS containing only matrix do not exhibit such a staircase pattern. These profiles

exhibit smoother deviations from the linear distributions. It is clear that the temperature profiles

generated using the standard homogenization approach, although conservative, exhibit substan-

tial deviations from those of the present theory for M < 8 for the RCS containing both phases,

with smaller differences observed in the RCS containing matrix only.

Figures 7 and 8 illustrate the corresponding normal stress profiles, t_22 and t_33, in the RCS

containing both fiber and matrix phases, whereas Figures 9 and 10 present the stress profiles in

the matrix only RCS. As in the preceding cases, the linear normal stress distributions in the two

directions generated with the standard homogenization approach (denoted by dashed lines) are

included for comparison. Also presented are the results obtained using the primitive

micromechanics approach discussed earlier. We first compare the predictions of the present

theory with those of the standard homogenization approach and then with those of the primitive

micromechanics approach.

The stress profiles generated with the present model are radically different from the profiles

obtained with the standard homogenization approach for small values of M for both RCS's. In

the case of the RCS containing both phases (see Figures 7 and 8), the stress profiles exhibit

characteristic patterns, with substantially smaller gradients in the fiber phase than in the matrix

phase, as suggested by the corresponding temperature profiles in Figure 5. When M is small, the

stress profiles predicted by the present model are lower, i.e., conservative, than those obtained

using the standard homogenization approach. As M increases, the normal stress distributions

begin to oscillate around the linear or "mean" distribution predicted by the standard homogeniza-

tion analysis. A clear pattern of oscillations emerges when M is about 5. As M increases beyond
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5, the oscillationstake on a characteristicpattern,forming a "fan" whoseenvelopegrows with

increasingdistancefrom thetop surfacealong thex 1 axis, with the actual gradients in the fiber

and matrix phases being preserved. The stress magnitudes in the fiber phase are now greater that

the mean distribution, and thus non-conservative, whereas in the matrix phase they are lower and

consequently conservative. These oscillations are a direct result of the mismatch in the Young's

moduli of the fiber and matrix phases. It is interesting to note that the envelope of the normal

stress o22 grows at a significantly smaller rate with x l than the envelope of the normal stress

033. This is clearly rooted in the microstructure of the composite which has preferred orientation

along the x3 axis. In other words, the normal stress carded by the individual fibers in the x3

direction, that is required to maintain the composite flat in the presence of the thermal gradient,

is significantly greater than the stress carried by the fibers in the x2 direction. This is due to the

fibers being continuous along the x3 coordinate and discontinuous along the x2 coordinate. In

contrast, the differences in the normal stress distributions in the x2 and x3 directions predicted

by the continuum calculations are significantly smaller than the differences predicted by the

present model. Clearly, the continuum approach is insensitive to the actual microstructure of the

material in the presence of large fiber diameter, finite boundaries, and thermal gradient.

In the case of the matrix only RCS (see Figures 9 and 10), a clear pattern for both normal

stress distributions also emerges when M is about 5. In this case however, the situation is

reversed, with the normal stress o22 exhibiting greater oscillations than 033. Further, while the

average behavior of the normal stress t_22 tends to the distribution predicted by the continuum

approach, the average behavior of t_33 is below that of the linear distribution obtained from the

continuum theory. The oscillations observed in the o22 stress profiles are nonconservative in the

matrix subceI1 adjacent to a fiber subcell in the x2 -x3 plane, and conservative in the matrix

subcell adjacent to another matrix subcell in the same plane, as required by the continuity of

tractions between adjacent cells. In contrast, the oscillations observed in the 033 stress profiles

are conservative everywhere.

The results generated using the primitive micromechanics approach included in Figures 7

through 10 for M = 1, 3, 5 and 8 exhibit "square" stair-case patterns, characterized by piece-wise

uniform (no gradients) stresses in the fiber and matrix phases. The piece-wise uniform stress

field is a direct consequence of applying an average temperature obtained from the continuum

analysis over the unit cell, and subsequently treating it as an RVE in generating the microscopic

stresses. For the considered cases, this approach is seen to always overestimate the stresses in the

fiber phase, with the deviations from the present FG theory decreasing with increasing M. When

M = 16 (not shown), the differences are quite small. In contrast, the matrix stresses are underes-

timated in some regions, and consequently non-conservative, while in others they are
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overestimated. This is due to the stress gradients observed in the matrix phase that are predicted

by the present theory, which cannot be reproduced locally with the primitive micromechanics

approach. These differences depend on the considered stress component and the characteristic

cross-section. As in the preceding case, the differences between the two micromechanical

approaches in the matrix phase diminish with increasing M. For small values of M, these differ-

ences are significant and may be important in matrix-dominated failure modes. It is reassuring

that the actual character, or pattern, of the stress field is captured by the primitive micromechan-

ics approach for M as low as 3.

Finally, Figures 11 and 12 illustrate the normalized inplane force and moment resultants in

the Xz and x3 directions, respectively, as a function of the number of fibers, M, in the thickness

direction, that result from the normal stress distributions presented in Figures 7 - 10. Normaliza-

tion is carried out with respect to the corresponding continuum model predictions. The inplane

force resultants N2 and N3 shown in Figure 11 exhibit virtually identical behavior as a function

of M, and asymptotically approach the predictions of the continuum model from below for

increasing values of M. The continuum results thus provide a conservative estimate of the

actual inplane resultant forces that are required to maintain the various composite configurations

in place, for the applied loading and boundary conditions. A major conclusion obtained from

these figures is that the continuum approach significantly overpredicts the magnitudes of the

inplane force resultants for M less than about 10. Consequently, any design based on these quan-

rifles should be safe, albeit inefficient. In contrast to the identical asymptotic behavior exhibited

by the inplane force resultants, the inplane moment resultants M2 and M3 presented in Figures

12 approach the continuum predictions at different rates for increasing M, with M2 approaching

the continuum results faster than M3. In both cases, the asymptotic behavior is faster than for the

inplane force resultants. A major conclusion once again is that the continuum model over-

predicts the magnitudes of the moment resultants for M less than about 8. However, as in the

preceding case, the predictions are conservative.

4.2.2 Effect of the Thermal Conductivity. Mismatch

In this section, we investigate the effect of varying the thermal conductivity of the SiC fiber

on the thermal and stress fields, as well as the force and moment resultants. Figure 13 illustrates

the temperature and normal stress distributions in a unidirectional composite with three

through-the-thickness SiC fibers having different thermal conductiviries that yield _:f / _:,n ratios

of 25, 5 and 2.2. The profiles are given in the RCS containing both phases. As observed in the

temperature distributions presented in Figure 13a, the effect of decreasing the fiber thermal con-

ductivity is to increase the temperature gradient in the fiber which, in turn, results in a smaller
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temperature gradient in the matrix. The higher temperature gradients in the fiber due to the lower

thermal conductivities, generate higher normal stress gradients in the fiber and correspondingly

lower stress gradients in the matrix. In summary, lowering the mismatch in the thermal conduc-

tivities of the fiber and matrix phases tends to smooth out the staircase pattern observed in the

temperature distributions, and decreases the differences in the gradients of the normal stress dis-

tributions. One important difference should be noted in the two types of distributions. While the

temperature distribution will tend to a linear distribution with decreasing mismatch in the fiber

and matrix thermal conductivities, the corresponding normal stress distributions, because they

are also governed by the mismatch in the mechanical properties, will retain not only distinct gra-

dients in the fiber and matrix regions, but also the characteristic jumps or discontinuities across

the interfaces.

Temperature and normal stress profiles were also generated for a unidirectional composite

with twenty through-the-thickness fibers for the three fiber conductivities. In this case, the fine

microstructure produced temperature distributions whose macroscopic behavior was essentially

identical, with the differences due to the differences in the thermal conductivities only changing

the local gradients rather than the global character, The global behavior for these cases was the

same as that observed in Figures 5f, 7f and 8f generated for 1¢f/ _,,, ratio of fifty.

The inplane force and moment resultants for the considered composite configurations with

three and twenty fibers in the thickness direction are presented in Table 3 for the three ratios of

thermal conductivities. The inplane force and moment resultants for _¢y/r_ ratio of fifty

employed in generating Figures 5 through 12 are included for comparison. The resultants have

been normalized with respect to the corresponding inplane force and moment resultants gen-

erated with the continuum approach. In this ease, the effective or macroscopic thermal conduc-

tivity of the composite decreases from 16.2 to 10.7 (W / m-°C) as the thermal conductivity ratio

!¢f/1¢m decreases from 50 to 2.2. However, since only unidirectionally-reinforced composite

materials are considered, the inplane force and moment resultants remain the same, as dictated

by the solution of the Laplace's equation for the temperature distribution in a homogeneous strip

subjected to the given steady-state temperatures on the top and bottom surfaces. The inplane

force resultants N2 and N3 generated by the imposed temperature gradient were 0.87x105 N/m

and 0.95x105 N/m, respectively, while the inplane moment resultants M2 and M3 were 2.88 N

and 3.16 N. As observed in the table, and intuitively expected, the effect of decreasing the ther-

mal conductivity mismatch is to decrease the discrepancy between the inplane force resultants

predicted by the FG theory and the continuum approach for both configurations. When the

1¢f/ _:,,, ratio decreases from 50 to 2.2, the difference between the FG and continuum predictions

decreases from approximately 20% to 8% for the three-ply (M=3) configuration, whereas for the
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twenty-ply (M=20) configuration the corresponding percentage differences are on the order of

3% and 1%. An opposite trend is observed for the inplane moment resultants where decreasing

the thermal conductivity mismatch produces a greater discrepancy between the two approaches.

The increase in the discrepancy with decreasing _,,, / _:f ratio is relatively small for both confi-

gurations, namely 2% and less than 1% for the three-ply and twenty-ply configurations, respec-

tively. For both sets of inplane resultants, very little difference is seen in the results for the

tcf / _,n ratios of 50 and 25, indicating existence of a saturation limit beyond a certain K:f I _c,n

ratio.

4.2.3 Bi-directional Composites

Consider next the response of a continuously-reinforced bi-directional composite with

fibers oriented in both the x3 and x2 directions. The composite is constructed by starting with a

ply having fibers oriented in the x 3 direction, followed by a ply with fibers along the x 2 direc-

tion, which in the terminology of the lamination theory is called an alternating 900/0 ° laminate.

This sequence is repeated as many times as desired. The thickness of each ply in this case is 199

_tm with the fiber volume fxaction of 0.40 as before. Since now the ply thickness is kept constant

but the number of alternating 90 ° and 0 ° plies is allowed to increase, the total composite thick-

ness increases. However, since the problem is linear, this arrangement is equivalent to keeping

the ply thickness constant but decreasing the fiber diameter while maintaining a constant fiber

volume fraction. Therefore, although the various distributions in the thickness direction are now

given as a function of the coordinate x 1, they can be directly compared with those of the uni-

directional configurations. As before, the objective is to determine the number of fibers in the

thickness direction that are required for the results to approach those obtained using the standard

homogenization procedure. In view of the extensive results and the well-established trends for

the unidirectional configurations presented in the foregoing, we limit the discussion to bi-

directional configurations containing 8 and 20 rows of fibers.

As before, the temperature distributions for the two configurations are illustrated f'u'st in

Figure 14. These distributions are in the RCS containing both fiber and matrix phases. Clearly,

the distributions exhibit the same characteristic staircase pattern seen previously in the unidirec-

tional configurations, with the step Size decreasing with increasing M. As expected, the tempera-

ture distributions predicted by the continuum approach are the same as those for the unidirec-

tional cases because the transverse conductivity in the x 1 direction is the same for both the 0 °

and 90 ° configurations. The temperature distributions obtained using the present approach are

also the same as those obtained for the unidirectional configurations. This is a somewhat unex-

pected result in view of the different conductivities of the fiber and matrix phases, and the
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different microstructural details in the x l direction observed in the unidirectional and bi-

directional configurations. It is not clear at this time why the present model predicts identical

temperature distributions for the two different microstmctural configurations.

The normal stress distributions t_22 and o33, in the RCS containing both phases, are

presented in Figures 15 and 16, respectively. Due to the presence of alternating 0 ° and 90 °

layers, the envelopes of these distributions grow with increasing distance along the x l direction

at approximately the same rate. This is in contrast with the normal distributions observed in the

unidirectional configurations where the G33 stress component grew faster than the t_22 stress

component. We note that although the normal stresses in the fiber phase increased monotoni-

cally along the x l axis in the unidirectional configurations, this is not the case for the bi-

directional configurations. In fact, here the normal stresses increase at two different rates

depending on whether the fiber associated with the 90 ° or 0 ° layer is considered. Consequently,

the pattern that is observed for the RCS in the bi-directional configurations is bi-modal, thereby

giving the appearance of nonuniformity for M = 8. Alternatively, when M = 20, the full pattern

emerges from which the growth of the two normal stresses (t_22 and G33 ) at two different rates

can be easily discerned. The distribution of the normal stresses predicted by the present model

follows the results of the continuum model in an average sense. Comparison with the predictions

obtained using the primitive micromechanics approach will be presented elsewhere.

Figures 17 and 18 show the inplane force and moment resultants obtained from the normal

stress distributions presented in Figures 15 and 16. As in the case of unidirectional configura-

tions, these quantities have been normalized with respect to the continuum predictions and plot-

ted as a function of the number of layers, M, in the thickness direction. The trends observed for

the behavior of the inplane force and moment resultants for the bi-directional configurations

generally follow the same pattern as in the preceding cases. However, a characteristic difference

in the behavior of the inplane moment resultants is observed. Whereas for the unidirectional con-

figurations, the inplane moment resultants approached the lamination theory predictions in a uni-

formly asymptotic manner, the asymptotic behavior for the bi-directional configurations is not

uniform. This is particularly tree for small values of M where the initially rapid increase of M2

and M3 is followed by a pattern of alternating slow and rapid growth rates, resembling a stair-

case pattern.

4.3 Response of Composites with Tailored Mesostructure

In the final set of examples, we investigate the response of unidirectional composites with

nonuniformly spaced fibers to thermal gradients. Three fiber spacing variations in the FG direc-

tion are considered, namely linear, quadratic and cubic. The total thickness of the composite is
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kept fixed and the total fiber volumefraction of thecompositeis 0.40as in the precedinguni-
directional compositeswith uniformly spacedfibers. Thep-th cell dimension, Dp, in the FG

direction which determines the fiber spacing for the three variations was obtained from the fol-

lowing formulas:

linear fiber spacing

quadratic fiber spacing

Dp =A(p-1)+B (68)

cubic fiber spacing

Dp =A(p- 1) 2 +B (69)

Dp =A(p- 1) 3 +B (70)

where p = 1, 2 ..... M, B is a pre-assigned constant, and A governs the rate of increase of the cell

FG dimension. Let M be the number of fibers in the FG composite as before. The total thickness
M

of the composite, H = _ Dp, is then calculated from the following formulas:
p=l

linear fiber spacing

quadratic fiber spacing

H=A¢_" 2-M) +MB (71)
2

cubic fiber spacing

H =A[6(M+ 1)(2M+ 1)-M 2] +MB (72)

H = A[ (1 + a_,_ _r.,.2 2 _ M3] + MB (73)
4
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The following results have been generated for the case when M = 10, B = 199 wn and

H = 20B. Given these values, one can determine A directly, and since the total fiber volume frac-

tion in the FG composite is given by:

md_)2 (74)

vf= H(hl +h2)

the parameters d_p) = h 1 and d_ ) = h2 = D 1 - d_p) are determined for all values ofp.

The temperature distributions for the three nonuniform configurations, as well as the uni-

formly spaced reference configuration, are illustrated in Figure 19. Clearly, in all nonuniformly

spaced cases the temperature profiles are below that generated with uniformly spaced fibers. The

linear fiber spacing variation produced the smallest deviation from the temperature profile

obtained with uniformly spaced fibers, followed by the quadratic and then cubic fiber spacing

variations. The above results are consistent with the observation that decreasing the fiber spacing

close to the top surface increases the effective or "average" thermal conductivity in that region,

thus lowering the temperature profile.

The associated normal stress distributions cr22 and t_33 produced by the resulting tempera-

ture distributions are given in Figures 20 and 21. These stress distributions are explicitly com-

pared with the distribution obtained for the configuration with uniformly spaced fibers. As

expected, those configurations that have been tailored to give lower temperature distributions

necessarily produce lower stress distributions when compared to the stress distribution in the

presence of uniform fiber spacing. Consequently, the greatest reduction in the normal stress dis-

tributions occurs for the cubic fiber spacing variation, followed by the quadratic and linear varia-

tions.

The resulting inplane force and moment resultants for the three fiber spacing configurations

are illustrated in Figure 22 in bar chart form. The actual magnitudes have been normalized by

the corresponding quantifies obtained for the uniformly spaced fiber configuration. The results,

as expected given Figures 20 and 21, indicate that the greatest reductions in the presence of

nonuniformly spaced fiber configurations occur for the cubic variation, followed by the qua-

dratic and linear. Of the two sets of resultants, the inplane force resultants exhibit the greatest

relative reductions.

The last example discussed herein addresses the effect of reversing the temperature gra-

dient on the temperature and stress distributions in the presence of nonuniformly spaced fibers.

Again, the three configurations, i.e., linear, quadratic and cubic fiber spacings, discussed
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previously are considered, however now the top surface (x: = 0) is exposed to the elevated tem-

perature of 500°C and the bottom surface (x: = H) is maintained at 0°C. In practical terms for

instance, this situation may arise in aircraft applications involving frictional heating of the wing

skin during flight which, in turn, requires active internal cooling, causing the given temperature

gradient. In light of the preceding results, only the results for the cubic fil_er spacing case are

presented.

The temperature distribution for the cubic fiber spacing variation and reference uniform

spacing is presented in Figure 23a. In contrast with the preceding case, the temperature distribu-

tion is now higher than the distribution generated with uniformly spaced fibers, as one would

expect since the ceramic rich zone corresponds to the elevated temperature zone. In fact, the

temperature distribution with the reversed thermal gradient is the mirror image of the distribu-

tion with the original thermal gradient. The results presented in Figure 23a suggest that the mag-

nitudes of the normal stress distributions _22 and t_33 will now be greater than the corresponding

magnitudes obtained for uniformly spaced fibers. This is indeed the case as seen in Figures 23b

and 23c. Clearly, these normal stress distributions will generate inplane stress and moment resul-

tants that will be higher than the resultants obtained from the uniformly spaced fiber configura-

tion. Therefore, in order to reduce these quantities with respect to the reference quantifies in the

presence of uniform fiber spacing, the reversal of the thermal gradient should be accompanied

by the reversal of the fiber spacing gradient.

5.0 CONCLUSIONS

A new approach has been presented for analyzing the response of thin-walled, metal matrix

composites subjected to a thermal gradient, with a finite number of large-diameter fibers uni-

formly or nonuniformly spaced in the thickness direction. In this approach, the microstructural

and macrostructural details are explicitly coupled when solving the thermomechanical

boundary-value problem. This is in stark contrast to the standard micromechanical schemes,

based on the classical homogenization procedures, which treat the local (micromechanics) and

global (macromechanics) problems separately. Coupling of the local and global analyses allows

one to rationally analyze the response of metal matrix composites such as SiC:riA1 that contain

relatively few through-the-thickness fibers, as well as so-called functionally gradient composites

with continuously changing properties due to nonuniform fiber spacing or the presence of

several phases. In such composites, it is difficult, if not impossible, to define the representative

volume element CRVE) used in the traditional micromechanical analyses.

The numerical examples presented herein indicate that the standard homogenization pro-

cedure based on the premise of an RVE yields inaccurate results for thin-walled composites with
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asmall numberof large-diameter fibers in the thickness direction. In particular, the inplane force

and moment resultants obtained using the standard homogenization approach, that are necessary

to maintain the composite flat in the presence of a through-the-thickness thermal gradient, are

significantly overpredicted (i.e., conservative) for fewer than about 10 fibers when the mismatch

in the thermal conductivities of the fiber and matrix phases is large. For a larger number of

through-the-thickness fibers, the results of the present theory asymptotically approach the results

of the standard homogenization scheme. The local stresses, on the other hand, only converge to

the classical homogenized stresses in an average sense with increasing number of through-the-

thickness fibers, and can exhibit large non-conservative local fluctuations depending on the

microstructural details of the composite and the mismatch in the thermal and mechanical proper-

ties. An estimate of the local stresses can be obtained from the continuum approach by applying

an average temperature over a given volume containing both the fiber and matrix phases, and

solving the associated micromechanics problem, treating the given volume as an RVE. Such an

approach, herein called "primitive" micromechanics approach, must be employed with caution

since it may underestimate the local stresses in the presence of stress gradients at the

micromechanical level. The accuracy of this approach increases with increasing number of

through-the-thickness fibers, and may be acceptable when the number of fibers is greater than

10. For small number of through-the-thickness fibers, on the other hand, the present theory is

more suitable. These observations suggest that the use of the effective modulus concept must be

approached with caution when analyzing the thermal response of composites with relatively few,

large-diameter fibers in the thickness direction in the presence of thermal gradients.

The results obtained for composites with tailored mesostructures, i.e. nonuniformly spaced

fibers in the through-the-thickness direction, and large mismatch in both thermal and mechanical

properties, indicate that it is possible to reduce the temperature distribution, and thus obtain

more favorable stress distributions, by appropriately grading the microstructure of the compo-

site. This, in turn, reduces the inplane force and moment resultants, necessary to maintain the

composite flat in the presence of a thermal gradient, with respect to the corresponding quantities

that arise in composites with uniformly spaced fibers. The manner in which the microstructure of

the composite is graded must take into account the sign of the thermal gradient. Consequently,

tailoring of microstructure appears to be useful in those applications where the sign of the ther-

mal gradient is preserved.

The results presented point to the potential usefulness of the developed theoretical frame-

work for analyzing the response of advanced composites with tailored microstructures to thermal

gradients in the presence of elastic phases with temperature-independent properties. In the

future, the approach will be extended to include inelastic effects as well as temperature-
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dependent response of the constituent phases exhibited by advanced metal matrix composites at

elevated temperatures. Finally, the full potential of the presented method as a design tool for

functionally graded or tailored composites can only be realized, however, when it is combined

with an appropriate optimization approach (cf. Saravanos and Chamis, 1992; Saravanos and

Pereira, 1992). This too will be addressed in future work.
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8.0 APPENDIX

8.1 Thermal Analysis

8.1.1 Heat Conduction Equations

Let us multiply equation (6) by _(la)) i r(l_),,,,,--(3')tx2 ) tx3 )n, where l,m,n=0, 1, or 2 with

1 + m + n < 2. Integrating the resulting equation by parts and using the temperature expansion

given in equation (14), the following set of equations is obtained:

Lt(_,_,o ) + L_,_,o) + L_,o) =0

Lf(_,o) - Q_.o) = 0

a 1 a 1 a
¼a__ tLI(_,_,o)+-iL_(_,o)+yL_$._,o,1-2Ot_P,_,o)-o

(A1)

(A2)

(A3)

(_ -2 a1 2 ¢t 3Li_,_,O) + L_tOB,_,O)] Q_(_,_),o) =0
-i_-hl_ [ Lt(_,o)+

1_1_ [ g_,Ct_._.0, + gi(_._.o)-I-3L_.o)]- 20_(_._.I)=0

(A4)

(A5)

where in the above equations Q}_,_qm!n) has been defined previously (see equation (15)), and is

reproduced below for convenience,

d_)/2 h_/2 1y/2

Q(Ctl3v) . 1 _f
(l, th, n ) -- V _,l) _dff)12 _hl_/2 -1_,I2

(_(a)./.._(_),m (_t) ,_ (al_'t) (cx) -0) -(T)1 ) (x2) ) q' d_l dX2 d3¢3

with v_3, ) = d_)h _ l_, representing the volume of the subeell (oc[3T) in the p-th cell, and

d(p)

1 (____)n
L_ml_h'_'°) - v_)

[qtal_'_)(-_) + (-1) q_ ,,,--T/-lU'X 2 ct-_3

l,t/2 h 13

1 (__)n _;12 _/2 [q_) (_.__) +0,-
h (a) ($)

(-1)n +1 q_tXl_T)(-_)]affl a_3

(A6)

(A7)
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1 , (_it (A8)

d(P) Qt hl_
where n = 0 or 1, and q_a_) (+.___), q_ I_) (+-_---), qta_'t) (+__) denote the interfacial fluxes at

_.(et)l 1 ,-)_(13)=+__d_ ,X2 = +lhl_'x_'t)-2 =+ll't'respectively'-2

Equations (A 1) through (A5) provide relations between the zeroth-order and fu'st order heat

fluxes Q}_!n) and the interracial fluxes L!_,_m!,O. Explicit expressions for the interracial fluxes

L}_,_!,,) given solely in terms of a!_,_!,,) are obtained through the following sequence of mani-

pulations, noting that equation (A2) already provides a direct relation between Q_,]_,o) and

L_,o). First, substituting equation (A1) into equations (A4) and (A5), respectively, gives the

following direct expressions for L_,]_,o) and L_,]_,0).

(A9)

(AIO)

Then upon substitution of equations (A9) and (A10) into equation (A1) we obtain the following

expression for L_,]_,o).

Lt(_,_,o) = -12(Q_,o)/h_ + Q_(a_,l)/l_ ) (A11)

Equations (A9) through (All) will be used to reduce the heat conduction and heat flux con-

tinuity equations to expressions involving only the heat flux quantities _J(t,,h,,O'r_(al3'/)These can sub-

sequently be expressed in terms of the fundamental unknown coefficients T_ aId't), appearing in

the temperature expansion given by equations (14), using equations (16) through (19).

8.1.2 Heat Flux Continuity Equations

The heat flux continuity conditions (8) - (9) are imposed on an average basis at each subcell

and cell interface. Prior to imposing these continuity conditions, let us define intermediate quan-

tifies _ll_v) and g! ll_/) as follows:
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j_tll]qr) = q_l_,/) I-c,>x =d_')/2 - q!lt_) I (A12)

g!ll3,t) = q_ll_v) [_i_)=d_,/2 + q!ll_) I_(1,)=_d_)/2 (A13)

These quantities will simplify the algebra associated with application of the heat flux continuity

requirement on an average basis in the FG direction. Then substituting equations (8a) and (9a)

into the above definitions we have,

(P) (p) (p-l)

Al_7) I = qt 21_7) I-(27x,=-a_'),2 - qt 2137) I_ ) =a_¢-1)/2 (A14)

(P) (p) (p-l)

gtll_) I = qt2137) I_._)=_d_),,2 + at 2137) [ :_)=d_-1),'2 (A15)

Adding and subtracting equal quantities to and from equations (A14) and (A15) it can easily be

verified that

(p)

2f_11_7) I = [_f_21_y)+ gt213y)](P) _ [f_2l_) + gt21_7)](p-1) (A16)

(P)

2gtllh,) I = [_f_zl_v) + gt2_)l(p) + [.f_zl_v)+ gflh')lq'-l) (A17)

Then using equations (A16) and (A17) in equation (A6), we obtain the following heat flux con-

tinuity conditions for the FG direction:

(P) + Id,_-l)LI_,_,0) ](P-I)(A 19)- _[LI(_,_,o)LI_,,_,o) I '_ = -_[LI(_',_,o)l2 Id_)Ll_.td, o)](p)+ 1 24

The heat flux continuity conditions in the remaining two directions are obtained using equations

(8b) and (8c) in equations (A7) and (A8), repectively. From equations (8b) and (A7) we have

44



(p) (p)
ctl (:z2h 1L_(o,_,0)I =-hEL_(o_,o) I

(A20)

while from equations (8c) and (A8)

(p) (P)
oil ct2

/ 1L_(_,_,o) I = _/2L_(_,_,o) I (A21)

We note that equations (9b) and (9c) are identically satisfied for a material that is periodic in the

x 2 and x 3 directions by the chosen temperature field representation.

Equations (A9) through (A11), together with equation (A2), will be employed in reducing

the heat flux continuity conditions (A18) through (A21) to expressions involving only the

volume-averaged zeroth-order and first-order heat flux quantities Q!_!n).

8.1.3 Reduction of Heat Conduction and Heat Flux Continuity Equations

Substituting equation (A1) into (A3), and using equations (A9) and (A10), reduces the

volume-averaged heat conduction equations to a set of 8 equations given by equation (20) on

page 16.

"i- cx /h_ Q_,_,l)/12 ] (p)'-Ot + (20)

Using the expression for L_,o) given by equation (All), and the expression for Lt_,_.o)

given by equation (A2), in the continuity relations (A18) and (A19), we obtain equations (21)

and (22) on page 16 and 17.

d_ ) , 2 2 Q_2(_,_,l)/l_ ](P)
[ 12Q_,t,o)/h_ + 12Q_,_,l)/l_ ](P) + 6-_j-t Q_(_,,t,o)/h_ + +

(p) (p-i)
d_ v-l) . 2 2 (p-l) 1

6_.__LQ_2(_Vt,o)lhl +Q_(_,,_,I)/Iv ] + ._ [ Qt_,o) [ _ Qt_,o) ! ]:o (21)

and
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(p)

at} Jd,0)I 1 2= I

(22)

Finally, combining equations (A9) and (A20), as well as equations (A10) and (A21), gives

equations (23) and (24) on page 17.

c_r, ](e)[ a_)?_,o)/hl + a_(o,_,o)/h2 =0

[Q_(,_,lo),I)/I1 + a 2 ](p)

(23)

(24)

As indicated previously, equations (20) through (24) are easily expressed in terms of the

fundamental unknown coefficients T! c_ffr)using equations (16) through (19).

8.1.4 Thermal Continuity Equations

As in the case of the heat flux field, the thermal continuity conditions (10) - (11) are

imposed on an average basis at each subceU and cell interface. Thus substituting equation (14)

into equations (10a) - (10c), respectively, we obtain at each subcell interface the following con-

ditions:

l )2 11_7) = [ + _ -- (25)[ T_ollh') + d_P)T_I_ ) + _--d_ p T_ ](P) T_)2I_,) _d_)T_213_, ) 1 d_)ZT(221s_,) ](p)

1 _.2,r.(alv) ](p) T_)Ct27)+ 1 h2T_a27) ](p)
[ T_ e_l"_) + _-"l'B = [ _ 2 (26)

1,2.r(a_1) ](p) 1/2T_CXl_2) ]q,)
[ Z_ a_1) q- _-,1_4 -" [ T_ oct2) -1- _- 2 (27)

Furthermore, substituting equation (14) into equation (1 la) to ensure continuity of temperature

between neighboring cells in the FG direction, we obtain the condition

1 d_)2T,_213_,) ](PX28)
[ T_1137) -21 d_+I)Ttl_-/)_ +41 d_+l)ZT_Xl_,)_](p+l) = [ T_21_'t)+ ld._')Tt21_) + -_-
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The remainingtwo conditions(llb) and(1lc) areidenticallysatisfiedfor a functionally graded

materialin thex 1-direction that is periodic in the x2 and xs-directions.

8.2 Mechanical Analysis

8.2.1 Equations of Equilibrium

Let us multiply equation (30) by (_))l (_[}))m ('_'f))n, where again l, m, n = 0, 1, or 2

with l + m + n < 2. Integrating the resulting equations by parts, and using the displacement

expansions (39), we obtain the equations of equilibrium in the subcell region (al37) in the form:

It]_,)0,0) + J_C_,)o,o) + K_]_,)O,O) = 0

It]_,)0,0)- Stc_,)O,O)=0

J[C_I_)l,O)- S[_)o,o) =0

K_([i_?o,1)- St(_)o.o)=0

3It_,)o,o) + J_,)o,o) + K[]_,)o,o) - 24S_([,)o,o)/d_)2 =0

lt]_)o,o) + 3j[]_)o,o) + K_)o,o) - 24St_I_)l,o)/h_ =0

I]_,)o,o) + J_I_)o,0) + 3K_C_,)o, 0) - 24St_3(_,)°,1)/1_ :0

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

°(a_') . has been defined previously (see equation (40)), and is reproduced below forwhere '_4 (l,m,n)

convenience,

d_)/2 h_/2 l,t/2
,_(a) .t ,-(_)

s(Ct137),j(t,m,n)- (_1 I) l I tXl ) tx2
V(ct157) -d_ 12 -h_/2 -l_/2

for i, j = 1, 2, and 3, with v_cx_) = d_)h_ll, and

hl_/2 l.y/2

I (}d_))nl I rC(cxf_T)gl,.t(p) + (-l)n+lC_)(_}d_))]d_ _)d_ _) (A29)
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d_ )/2 l,t/2

a_) /2 hf_/2

[t_l_,t)(21_,)( i),,+I¢al_:)1 (a)_(I_>+ - o_i _(-_-1.:)]__a

(A30)

(A31)

_(,xlh,):+ld(p)_ o_l_)(+lhl_), o_lh')(+ll_,), stand for the interfacial stresses atand where vii _-2 ¢x /,

_7) +1 ,_) -(1_) 1 _/) 1 1
= -_aot , x2 = +_h I_, = +_ _t, respectively.

Equations (A22) through (A28) provide relations between the zeroth-order and first order,

S (exIt':) and the inteffacial tractions I_)o,o), J_(!n.o) andvolume-averaged stresses tj(l,m,n)

K_,)O,n). Direct "one-to-one" relations are obtained through the following sequence of manipu-

lations, noting that equations (A23) through (A25) already provide direct relations between

St_?o,o) and ItChy)o,0), S[_,)o,o) and J_,)l,O), St_,)O,O) and K_C_,)0,1). First, substituting equa-

tion (A22) into equations (A27) and (A28), respectively, gives direct expressions for J[_,)o.o)

112Kt_(_,)o o) = 2St_)O, 1)
6 ' "

(A32)

(A33)

Then, upon substitution of equations (A32) and (A33) into equation (A22), we have the follow-

ing expression for It¢_,)o,0)"

I_,)o,o) = -12(St_(_,)l,o)/h_ + S_(_.)o,1)/l_ ) (A34)

Equations (A32) through (A34) will be used to reduce the equilibrium equations and traction

continuity equations to expressions involving only the zeroth-order and first-order, volume-

averaged stress quantities S_)m,n). These can subsequently be expressed in terms of the funda-

mental unknown coefficients wt _[_), Ut _1_:), V__), Wt c_), _t _l;':), X _c_)' and _/_ett_) appearing

in the displacement field expansion given by equations (39), using equations (41) through (46).
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8.2.2 Traction Continuity Conditions

The traction continuity conditions, equations (33) - (34), are imposed on an average basis at

the subcell and cell interfaces. These conditions imply existence of certain relationships between

the surface integrals of the interfacial traction components defined by equations (A29) - (A31).
p01_') _(!PY)

To assist in establishing these relations, let us define two new quantifies -0 and "-'u as fol-

lows

_ O.(lP_) 1_-(_) ._.a_,)/2 (A35)F ('lpY) = o (I"pr) 1_(11)=d_ )/2 U =_j q

(A36)

Substituting equations (33a) and (34a) into the above definitions, we obtain, respectively:

(p) (p) (p-l)

Ft]Pv) I = o{2113V)I i,=, =_.a_,,,2 - ot21Pv)I _ ' =ag-')/2 (A37)

(P) (p) (p-l)

Gt_I_,) I = ot211!q)I r_)=_a_,)/2 + ot21Pr)] _ ) =a_'-1)/2 (A38)

By addition and subtraction of equal quantities to and from equations (A34) and (A35) it can

easily be verified that

(p)

2FIller I = [-F_P_') +G_P_')]0') _ [Ft2_) +Gt_I_)]_'-I)

(p)

2Gf x ) I = [Gt ]pY) -Ft]PY)] (p) + [Gt ]pq') + F,_]_)] (p-l)

(A39)

(A40)

Then employing equations (A36) and (A37) in equation (A29) with j = 1, we obtain the

corresponding relations:

(P) _ 1 d(V)l(2_ ) _. ](p) _ [it2_¢!0,0) + _-a2 1I(o,o,o)d_)l_l_8o, o) i = [/t_'!o,o) _- 2 11"(0,0,o) 1 .¢_-1)i(2_) ](p-l)

_) 1 2 ) 1 ) 2p._ (p) 1 213) + ld_-l)lt2P(_?O,O>]q '-1)/ii T!o,o)I = -_[it1[_,o,o) - _'d_ ° I_1(_,0,0)] + -_[Itl(t,o,o)

(A41)

(A42)
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Similarly, using equations (33b) and (A30) we have

(p)

h 1J_C_!o,o) i = -h 2J_!o,o) I

¢/,) q_)
al ) or2 )J_2(_!l,O)I = J_4g;1,o) !

(A43)

(A44)

and from equations (33c) and (A31) we obtain

(p) (p)

/ 1K_c_I,)0,0) ! = _12K_IO2,)O,O) I (A45)

(p) (p)

K_3c_(_?0,1) ] = Kt_(_02,)0,1)[ (A46)

We note that the other two traction continuity conditions, equations (34b) and (34c), are

identically satisfied for the present case of an applied normal mechanical loading in the x 1-

direction.

As a result of the above manipulations, 24 relations, given by equations (A41) through

(A46), arise from the traction continuity conditions between subcells and between neighboring

cells. These equations, in conjunction with equations (A22) through (A26), and equations (A32)

through (A34), will be employed in reducing the equilibrium and traction continuity equations to

expressions involving only volume-averaged zeroth-order and first-order stresses ,j (t,,,,-O -

8.2.3 Reduction of Equilibrium and Traction Continuity Equations

Substituting equation (A22) into equation (A26) and using equations (A32) and (A33),

reduces the volume-averaged equilibrium equations to a set of 8 equations given by equation

(47) on page 23, reproduced below for convenience.

[ S_)o,o)/d_)2 + stC_,)l,o)/h_ + StC_(_)o,1)/l 2 ](P)=0 (47)

Combining the expressions for lt_/)o,o) and It_,)o,o), provided by equations (A23) and

(A34), and the continuity relations (A41) - (A42), respectively, we obtain the following eight

equations
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(p) (p - D

1 26 ) - StI(_,o,o) [ ]=0(48)
6_td_-l)'st_!l,o)/h_ + St2_!o,1)/l_ ](p-X) + -d-_- [ Stl(_,0,0 ) ! 26 )

and

S_l_!o,o) [

(p) (p-I)

(P) = ._..Stl_,_,o,o)l2 ) [ + _-1 s(z_)o o"11(0; , ) I + 3d_) [ Sf_,l,O)2 ) ]h[_2 + St_(_? 0,. l)/l_](p) _

3d_'-a)[St_!l,o)/h_ + S_?o.l>/t3_](p-l) (49)

Continuing, if we substitute equation (A32) into equation (A43) directly, and equation (A33)

into equation (A45), we obtain, respectively:

tst_g?l,o>/h,+St_&o_/h2](P_=0

t stC_(d,)o,1)[ll + StC_(_)o,1) ]12 ](p) =0

(50)

(51)

Finally combining equations (A24) and (A44), and equations (A25) and (A46), yields, respec-

tively,

(p)
al ) cz2)s)_(_:o,o)I =sh(_:o,o>I

(p)

(P)

(p)

(52)

(53)

As indicated previously, equations (47) through (53) are easily expressed in terms of the funda-

mental unknown coefficients wt alh'), Ut a_'), Vt al_'t), Wt a_), _t aId't), )_al_,), and V__') using equa-

tions (41) through (46).

8.2.4 Displacement Continuity Conditions

The displacement continuity conditions, i.e. equations (35) - (36), are now imposed on an

average basis at the interfaces. This is accomplished by fh-st substituting equation (39) into
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equation (35a),

1 ) 1137) 1 d2U_1_7 ) ](p)[wt + +T '

then into equation (35b)

1 .t2rr(21_') ](p)
=[ wt 21_') - ld_)t_t 2153')+ "_-u2'-'1 (54)

1 h2V(a2.7) ](p) wttt2y) 1 L.21z(a2y) ](p)
[ Wt °_17) + "_" 1 I = [ + "4"n2,l

(p) (p)

h lX_,=lv) I = -heX_'2_> i

(55)

(56)

followed by equation (35c)

1,21xz(ct_2) ](p)
[ Wt ctl_l) + 412W_ a_l) ](P)= [ wt etl_2> + -_-'2" 1

(p) (p)

(57)

(58)

and f'mally into equation (36a)

1 )2 267) ] (59)[ wt:l_, ) 1 d(f,+D@tll3v)+ 1 d_P+l)2u_l[_,) ](p+l)= [ wt2157) + ld,_)_t2137) + -_--d_ U_ q')

The other two displacement continuity relations (36b) and (36c) are identically satisfied for

the present case of normal loading applied in the x 1-direction. Consequently, equations (54) -

(59) provide 24 relations which must be imposed to guarantee the continuity of the displace-

ments between the subcells and between neighboring cells.
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Table 1. Material properties of SCS6 SiC fiber and titanium matrix.

Material E (GPa) v ct (10 -6 m / m / °C) _c(W /re-°C)

SiC fiber 414.0 0.3 4.9 400.0, 200.0, 40.0, 17.6

Ti-A1 matrix 100.0 0.3 9.6 8.0

E and v denote the Young's modulus and Poisson's ratio, respectively, oc is the coefficient of

thermal expansion, and _: is the thermal conductivity.

Table 2. Material properties of the SCS6 SiC/Ti composite (vf = 0.40).

EA (GPa) V A Er (GPa) GA (GPa)

226.0 0.30 167.0 60.9

tXA ( 10 -.6 m / m / °C) tx T (10 -6 m / m / °C) _cA (W / m-°C) _:T (W / m-°C)

6.15 7.90 164.80 16.20

Subindices A and T denote axial and transverse quantifies, respectively.
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Table 3. Normalized inplane force and moment resultants for different K:f / _:m ratios.

VI=3

50.0 0.7954 0.7895 0.9444 0.9209

25.0 0.8046 0.8000 0.9409 0.9177

5.0 0.8621 0.8631 0.9271 0.9019

2.2 0.9195 0.9158 0.9201 0.8924

VI = 20

50.0 0.9655 0.9684 0.9930 0.9873

25.0 0.9655 0.9684 0.9930 0.9873

5.0 0.9770 0.9789 0.9896 0.9842

2.2 0.9885 0.9895 0.9896 0.9842
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